4.5 Article

Ray-leakage-free planar solar concentrator featuring achromatic hybrid collectors and innovative secondary optical elements

Journal

OPTICS COMMUNICATIONS
Volume 402, Issue -, Pages 678-689

Publisher

ELSEVIER
DOI: 10.1016/j.optcom.2017.06.088

Keywords

Nonimaging optics; Concentrators; Solar energy; Waveguides; Slab

Categories

Funding

  1. National Nature Science Foundation of China (NSFC) [61605016]

Ask authors/readers for more resources

For high concentration ratio of the planar concentrator which is mainly used for photovoltaic or solar-thermal applications, the ray-leakage must be prevented during rays propagated in the lightguide. In this paper, the design of a ray-leakage-free planar solar concentrator is introduced with achromatic hybrid collectors and innovative secondary optical elements. The distance between two columns of dimple structures is larger because the collector width is irrelevant to the collector length, which prompts the ray-leakage-free propagating length can be raised greatly. Put differently, the proposed concentratorcan obtain a high geometrical concentration ratio while achieving a high optical efficiency. To increase the ray-leakage-free propagating distance, a mathematical model between ray-leakage-free propagating length and the corresponding parameters is established, where the corresponding parameters include the parabola coefficient, the width of collector, the concentrator height and the small expanding angle of the dimple structure. Numerical results display that more than 5000x geometrical concentration ratio of the proposed concentrator is achieved without any leakage from the lightguide. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available