4.6 Article

Direct diabatization based on nonadiabatic couplings: the N/D method

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 41, Pages 26643-26659

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp03410a

Keywords

-

Funding

  1. Air Force Office of Scientific Research [FA9550-16-1-0161]

Ask authors/readers for more resources

Diabatization converts adiabatic electronic states to diabatic states, which can be fit with smooth functions, thereby decreasing the computational time for simulations. Here we present a new diabatization scheme based on components of the nonadiabatic couplings and the adiabatic energy gradients. The nonadiabatic couplings are multi-dimensional vectors that are singular along conical intersection seams, and this makes them essentially impossible to fit; furthermore they have unphysical aspects due to the assumptions of the generalized Born-Oppenheimer scheme, and therefore they are not usually used in diabatization schemes. However, we show here that the nonadiabatic couplings can provide a route to obtaining diabatic states by using the sign change of the energy gradient differences of adiabatic states on paths through conical intersections or locally avoided crossings. We present examples applying the method successfully to several test systems. We compare the method to other diabatization methods previously developed in our group.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available