4.6 Article

One-Pot Magnetic Iron Oxide-Carbon Nanodot Composite-Catalyzed Cyclooxidative Aqueous Tandem Synthesis of Quinazolinones in the Presence of tert-Butyl Hydroperoxide

Journal

ACS OMEGA
Volume 3, Issue 10, Pages 13711-13719

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.8b01794

Keywords

-

Funding

  1. IIT Indore
  2. SIC, IIT Indore
  3. UGC, New Delhi
  4. SAIF
  5. NEHU
  6. Shillong
  7. UGC-DAE Consortium for Scientific Research, Indore
  8. IIT Kanpur

Ask authors/readers for more resources

The development of synthetic protocols for biologically important molecules using biocompatible catalysts in aqueous medium holds the key in green and sustainable chemistry. Herein, a magnetically recoverable iron oxidecarbon dot nanocomposite has been demonstrated as an effective catalyst for cyclooxidative tandem synthesis of quinazolinones in aqueous medium using alcohols as starting materials. Fluorescent carbon dots, the newest entrant in the nanocarbon family, were used as the stabilizing agent for the iron oxide nanoparticles, and a continuous layer of carbon dots decorates the iron oxide nanoparticle surface as observed by transmission electron microscopy. The fluorescence studies demonstrated the effective electron transfer from carbon dots to the iron oxide nanoparticles resulting in complete quenching of emission owing to carbon dots, once it binds with iron oxide nanoparticles. The nanocatalyst showed high activity with significant reusability for the syntheses of quinazolinones in the presence of tert-butyl hydroperoxide (TBHP) in an aqueous medium. Controlled experiments revealed the synergistic effect of carbon dots in enhancing the catalytic activity of iron oxide, as they might influence the decomposition of TBHP into radicals owing to their peroxidase activity. These radicals stabilized over the nanoparticle surface are known to have increased lifetime compared to solution-based radicals. These surface-stabilized radicals then could catalyze the tandem reaction resulting in the formation of the quinazolinone derivatives in high yields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available