4.7 Article

Effective nonlinear model for electron transport in deformable helical molecules

Journal

PHYSICAL REVIEW E
Volume 98, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.052221

Keywords

-

Funding

  1. Spanish MINECO [MAT2016-75955]

Ask authors/readers for more resources

The helical conformation of electric dipoles in some chiral molecules, such as DNA and bacteriorhodopsin, induces a spin-orbit coupling that results in a sizable spin selectivity of electrons. The local deformation of the molecule about the moving electron may affect the spin dynamics due to the appearance of bright solitons with well-defined spin projection onto the molecule axis. In this work, we introduce an effective model for electron transport in a deformable helical molecular lattice that resembles the nonlinear Kronig-Penney model in the adiabatic approximation. In addition, the continuum limit of our model is achieved when the dipole-dipole distance is smaller than the spatial extent of the bright soliton, as discussed by E. Diaz et al. [N. J. Phys. 20, 043055 (2018)]. In this limit, our model reduces to an extended Davydov model. Finally, we also focus on perturbations to the bright soliton that arise naturally in the context of real helical molecules. We conclude that the continuum approximation provides excellent results in more complex scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available