4.8 Article

Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α

Journal

ONCOGENE
Volume 36, Issue 27, Pages 3868-3877

Publisher

SPRINGERNATURE
DOI: 10.1038/onc.2017.13

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program) [2015CB553800]
  2. National Natural Science Foundation of China [81372176, U1405225, 81372168, 81470116]
  3. Shanghai Natural Science Foundation [14ZR1433200]
  4. Wu Jie Ping Medical Foundation [320.6750.16051]

Ask authors/readers for more resources

High aerobic glycolysis not only provides energy to cancer cells, but also supports their anabolic growth. JMJD1A, a histone demethylase that specifically demethylates H3K9me1/2, is overexpressed in multiple cancers, including urinary bladder cancer (UBC). It is unclear whether JMJD1A could promote cancer cell growth through enhancing glycolysis. In this study, we found that downregulation of JMJD1A decreased UBC cell proliferation, colony formation and xenograft tumor growth. Knockdown of JMJD1A inhibited glycolysis by decreasing the expression of genes participated in glucose metabolism, including GLUT1, HK2, PGK1, PGM, LDHA and MCT4. Mechanistically, JMJD1A cooperated with hypoxia inducible factor 1 alpha (HIF1 alpha), an important transcription factor for glucose metabolism, to induce the glycolytic gene expression. JMJD1A was recruited to the promoter of glycolytic gene PGK1 to demethylate H3K9me2. However, the JMJD1A (H1120Y) mutant, which loses the demethylase activity, failed to cooperate with HIF1a to induce the glycolytic gene expression, and failed to demethylate H3K9me2 on PGK1 promoter, suggesting that the demethylase activity of JMJD1A is essential for its coactivation function for HIF1a. Inhibition of glycolysis through knocking down HIF1a or PGK1 decelerated JMJD1A-enhanced UBC cell growth. Consistent with these results, a positive correlation between JMJD1A and several key glycolytic genes in human UBC samples was established by analyzing a microarray-based gene expression profile. In conclusion, our study demonstrates that JMJD1A promotes UBC progression by enhancing glycolysis through coactivation of HIF1a, implicating that JMJD1A is a potential molecular target for UBC treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available