4.8 Article

SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis

Journal

ONCOGENE
Volume 36, Issue 27, Pages 3903-3914

Publisher

SPRINGERNATURE
DOI: 10.1038/onc.2017.30

Keywords

-

Funding

  1. National Science Foundation for Distinguished Young Scholars of China [31125012]
  2. National Natural Science Foundation of China [81202102, 81672592, 31370749, 31670759, 81572882]
  3. Project for Innovative Research Team of Ministry of Education [IRT13085]
  4. Project of Applicative Basic Research and Advanced Technology of Tianjin Municipal Science and Technology Commission [13JCQNJC12100]
  5. Specialized Research Fund for the Doctoral Program of Higher Education [20121202120018]

Ask authors/readers for more resources

As an AEG-1/MTDH/LYRIC-binding protein, Staphylococcal nuclease domain-containing 1 (SND1) is upregulated in numerous human cancers where it has been assigned multiple functional roles. In this study, we discovered that SND1 was upregulated in breast cancer tissues, particularly the tissues from patients with distant metastases. The underlying molecular mechanisms demonstrated a novel role of SND1 in regulating the activity of transforming growth factor beta 1 (TGF beta 1) signaling pathway, which promotes metastasis in breast cancer. We illustrated that SND1 physically associated with and recruited the histone acetylase GCN5 to the promoter regions of Smad2/3/4, and consequently enhanced the gene transcriptional activation of Smad2/3/4, which are essential downstream regulators in the TGF beta 1 pathway. An electrophoretic mobility shift assay experiment further verified that SND1 could recognize the conserved domains (motifs 1 and 2) in the promoter regions of the Smad genes. Glutathione S-transferase (GST) pulldown assays indicated that the tudor domain of SND1 was responsible for the recruitment of GCN5, which increased histone H3K9 acetylation. Consistent with these results, a loss-of-function of SND1 reduced the protein level of Smads and the phosphorylation of R-Smads, thereby attenuating the R-Smad/Co-Smad depended transcription and, as a result, inhibited TGF beta signaling activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available