4.6 Article

Unusual fluorescent photoswitching of imidazole derivatives: the role of molecular conformation and twist angle controlled organic solid state fluorescence

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 43, Pages 27385-27393

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp05355c

Keywords

-

Funding

  1. Science and Engineering Research Board (SERB), New Delhi, India [EMR/2015/00-1891]
  2. MSIP
  3. POSTECH
  4. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF-2017R1C1B2003111]

Ask authors/readers for more resources

Molecular photoswitching, light induced reversible color/fluorescence modulation, has mostly been realized in organic molecules via E/Z isomerization of azobenzenes and stilbenes and ring opening/closing reactions of spiropyrans and diarylethenes. We report here new fluorescent molecular photoswitches based on triphenylamine (TPA)-imidazole derivatives, N-phenyl-N-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)benzenamine (NTPB) and N-phenyl-N-(4-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)benzenamine (NPPB), that exhibited light induced reversible fluorescence switching via conformational change from a twisted molecular structure to more planar. NTPB and NPPB in CHCl3 showed red shift of absorption and fluorescence upon UV light irradiation whereas white light exposure reversed both absorption as well as fluorescence. The role of the TPA-imidazole twisted molecular structure in photoswitching was established based on structure property, computational and photophysical studies. The isobestic point observed in time dependent fluorescence change under UV light irradiation clearly demonstrated the presence of two different conformational isomers. Interestingly, polymorphism and torsion angle () dependent fluorescence of NTPB and NPPB in the solid state also supported the role of the twisted molecular structure of TPA-imidazole in fluorescence switching/tuning. Interestingly, NTPB showed fluorescence photoswitching in the solid state also whereas rigid phenanthrene based NPPB did not show fluorescence photoswitching. Thus the present studies provide structural insight for designing a new type of fluorescent organic molecular photoswitches based on conformational modulation that could be of potential interest in optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available