4.8 Article

O-GlcNAcylation modulates Bmi-1 protein stability and potential oncogenic function in prostate cancer

Journal

ONCOGENE
Volume 36, Issue 45, Pages 6293-6305

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2017.223

Keywords

-

Ask authors/readers for more resources

The Polycomb group transcriptional repressor Bmi-1 often overexpressed and participated in stem cells self-renewal and tumorigenesis initiating of prostate cancer. In this progression, Bmi-1 protein was regulated by transcription and post-translational modifications (PTMs). Nobly, the underlying PTMs regulation of Bmi-1 is poorly known. Here we use co-immunoprecipitation show that in C4-2 cell line, Bmi-1 directly interacted with OGT which is the only known enzyme catalyzed the O-GlcNAcylation in human. Furthermore, we identified that Ser255 is the site for Bmi-1 O-GlcNAcylation, and O-GlcNAcylation promoted Bmi-1 protein stability and its oncogenic activity. Finally, microarray analysis has characterized potential oncogenes associated pathway subject to repression via the OGT-Bmi-1 axis. Taken together, these results indicate that OGT-mediated O-GlcNAcylation at Ser255 stabilizes Bmi-1 and hence inhibits the TP53, PTEN and CDKN1A/CDKN2A pathway. The study not only uncovers a novel functional PTMs of Bmi-1 but also reveals a unique oncogenic role of O-GlcNAcylation in prostate cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available