4.5 Article

Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding

Journal

ADVANCES IN POLYMER TECHNOLOGY
Volume 37, Issue 7, Pages 2528-2540

Publisher

WILEY
DOI: 10.1002/adv.21928

Keywords

biodegradable; composites; molding; natural fibers; polylactic acid

Funding

  1. Mexican National Council for Science and Technology [400517]

Ask authors/readers for more resources

In this work, the possibility to produce polylactic acid (PLA) and agave fiber biocomposites by dry-blending and rotational molding was studied. The samples were also produced by compression molding to compare the effect of processing conditions on the biocomposites properties. In particular, the effect of fiber content (0-40 wt.%) on morphology, density, porosity, thermal (DSC) and mechanical properties (tension, flexion, impact and hardness) was studied. Also, a complete analysis of the internal air temperature profiles was performed to determine the thermal behavior of PLA during the rotational molding cycle. The results showed that rotomolded biocomposites were successfully produced but had higher porosity than compression molded ones due to the absence of pressure while forming. This led to different level of mechanical properties reduction as fiber content increases. Nevertheless, for compression-molded biocomposites, crystallinity (30% at 30 wt.%), tensile modulus (14% at 30 wt.%) and impact strength (71% at 40 wt.%) improvements were obtained compared to neat PLA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available