4.6 Article Proceedings Paper

Influence of the May Southern annular mode on the South China Sea summer monsoon

Journal

CLIMATE DYNAMICS
Volume 51, Issue 11-12, Pages 4095-4107

Publisher

SPRINGER
DOI: 10.1007/s00382-017-3753-3

Keywords

Southern annular mode; South China Sea summer monsoon; Coupled oceanic-atmospheric bridge

Funding

  1. 973 Program [2013CB430200]
  2. National Natural Science Foundation of China [41575060, 41690124, 41690120]

Ask authors/readers for more resources

The possible impact of the May Southern Hemisphere (SH) annular mode (SAM) on the following South China Sea (SCS) summer monsoon (SCSSM) is examined. A close inverse relationship between the two is revealed in the observations. The simultaneous South Pacific dipole (SPD), a dipole-like sea surface temperature anomaly pattern in the South Pacific, acts as the oceanic bridge to preserve the May SAM signal and prolong it into June-September. Observational evidence and numerical simulations both demonstrate that the SPD communicates its large thermal inertia signal to the atmosphere, regulating the Southern Pacific Subtropical Jet (SPSJ) variability over eastern Australia. Corresponding to the adjustment of circulation associated with the SPSJ is a prominent tripolar cross-Pacific teleconnection pattern stretching from the SH middle-high latitudes into the NH East Asia coastal region, referred to as the South-North Pacific (SNP) teleconnection pattern. Wave ray tracing analysis manifests that the SNP acts as the atmospheric bridge to propagate the related wave energy across the equator and into the Maritime Continent and SCS monsoon region, modulating the vertical motion and middle-lower tropospheric flows, and favoring the out-of-phase variation of the SCSSM. Therefore, the coupled oceanic-atmospheric bridge process and the related Rossby wave energy transmission are possible mechanisms for the significant influence of the May SAM on the variability of the following SCSSM. Therefore, the May SAM provides a fresh insight into the prediction of the SCSSM from the perspective of the SH high latitudes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available