4.5 Article

Grass Canopy Architecture Influences Temperature Exposure at Soil Surface

Journal

FIRE-SWITZERLAND
Volume 1, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/fire1030035

Keywords

grass flammability; canopy architecture; soil heating; meristem survival; grass fire ecological impact

Funding

  1. USGS South Central Climate Science Center

Ask authors/readers for more resources

There is increasing recognition that plant traits contribute to variations in fire behavior and fire regime. Diversity across species in litter flammability and canopy flammability has been documented in many woody plants. Grasses, however, are often considered homogeneous fuels in which any flammability differences across species are attributable to biomass differences alone and therefore are of less ecological interest, because biomass is hugely plastic. We examined the effect of grass canopy architecture on flammability across eight grass species in short grass steppe of New Mexico and Texas. To characterize grass canopy architecture, we measured biomass density and biomass-height ratio (the ratio of canopy biomass above 10 cm to that of biomass below 10 cm). Indoor flammability experiments were performed on air-dried individual plants. As expected, plant biomass influenced all flammability measures. However, biomass-height ratio had additional negative effect on temperature exposure at soil surface (accumulation of mean temperature >100 degrees C) in well-cured grasses, which is an important fire behavior metric predicting soil heating and meristem survival. This canopy architecture effect, however, needs further investigation to be isolated from biomass density due to correlation of these two traits. This result demonstrates the potential for species-specific variation in architecture to influence local fire effects in grasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available