4.7 Article

Application of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system

Journal

HYDROLOGY AND EARTH SYSTEM SCIENCES
Volume 22, Issue 11, Pages 6023-6041

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-22-6023-2018

Keywords

-

Funding

  1. Centre for Water Initiative and School of Biological and Earth Sciences
  2. ANSTO

Ask authors/readers for more resources

Three naturally intact wetland systems (swamps) were characterised based on sediment cores, analysis of surface water, swamp groundwater, regional groundwater and pore water stable isotopes. These swamps are classified as temperate highland peat swamps on sandstone (THPSS) and in Australia they are listed as threatened endangered ecological communities under state and federal legislation. This study applies the stable isotope direct vapour equilibration method in a wetland, aiming at quantification of the contributions of evaporation, rainfall and groundwater to swamp water balance. This technique potentially enables understanding of the depth of evaporative losses and the relative importance of groundwater flow within the swamp environment without the need for intrusive piezometer installation at multiple locations and depths. Additional advantages of the stable isotope direct vapour equilibration technique include detailed spatial and vertical depth profiles of delta O-18 and delta H-2, with good accuracy comparable to other physical and chemical extraction methods. Depletion of delta O-18 and delta H-2 in pore water with increasing depth (to around 40-60 cm depth) was observed in two swamps but remained uniform with depth in the third swamp. Within the upper surficial zone, the measurements respond to seasonal trends and are subject to evaporation in the capillary zone. Below this depth the pore water delta O-18 and delta H-2 signature approaches that of regional groundwater, indicating lateral groundwater contribution. Significant differences were found in stable pore water isotope samples collected after the dry weather period compared to wet periods where recharge of depleted rainfall (with low delta O-18 and delta H-2 values) was apparent. The organic-rich soil in the upper 40 to 60 cm retains significant saturation following precipitation events and maintains moisture necessary for ecosystem functioning. An important finding for wetland and ecosystem response to changing swamp groundwater conditions (and potential ground movement) is that basal sands are observed to underlay these swamps, allowing relatively rapid drainage at the base of the swamp and lateral groundwater contribution. Based on the novel stable isotope direct vapour equilibration analysis of swamp sediment, our study identified the following important processes: rapid infiltration of rainfall to the water table with longer retention of moisture in the upper 40-60 cm and lateral groundwater flow contribution at the base. This study also found that evaporation estimated using the stable isotope direct vapour equilibration method is more realistic compared to reference evapotranspiration (ET). Importantly, if swamp discharge data were available in combination with pore water isotope profiles, an appropriate transpiration rate could be determined for these swamps. Based on the results, the groundwater contribution to the swamp is a significant and perhaps dominant component of the water balance. Our methods could complement other monitoring studies and numerical water balance models to improve prediction of the hydrological response of the swamp to changes in water conditions due to natural or anthropogenic influences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available