4.8 Article

Efficient in situ barcode sequencing using padlock probe-based BaristaSeq

Journal

NUCLEIC ACIDS RESEARCH
Volume 46, Issue 4, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkx1206

Keywords

-

Funding

  1. National Institutes of Health [5RO1NS073129, 5RO1DA036913]
  2. Brain Research Foundation [BRF-SIA-2014-03]
  3. IARPA MICrONS
  4. Simons Foundation [382793/SIMONS, SCGB 350789]
  5. Paul Allen Distinguished Investigator Award
  6. Simons Foundation
  7. Cancer Center Support Grant [5P30CA045508]

Ask authors/readers for more resources

Cellular DNA/RNA tags (barcodes) allow for multiplexed cell lineage tracing and neuronal projection mapping with cellular resolution. Conventional approaches to reading out cellular barcodes trade off spatial resolution with throughput. Bulk sequencing achieves high throughput but sacrifices spatial resolution, whereas manual cell picking has low throughput. In situ sequencing could potentially achieve both high spatial resolution and high throughput, but current in situ sequencing techniques are inefficient at reading out cellular barcodes. Here we describe BaristaSeq, an optimization of a targeted, padlock probe-based technique for in situ barcode sequencing compatible with Illumina sequencing chemistry. BaristaSeq results in a five-fold increase in amplification efficiency, with a sequencing accuracy of at least 97%. BaristaSeq could be used for barcode-assisted lineage tracing, and to map long-range neuronal projections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available