4.8 Article

Structural and mechanistic insights into regulation of HBO1 histone acetyltransferase activity by BRPF2

Journal

NUCLEIC ACIDS RESEARCH
Volume 45, Issue 10, Pages 5707-5719

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkx142

Keywords

-

Funding

  1. National Natural Science Foundation of China [31521061]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB08010302]
  3. Ministry of Science and Technology of China [2013CB910404]

Ask authors/readers for more resources

HBO1, a member of the MYST family of histone acetyltransferases (HATs), is required for global acetylation of histone H3K14 and embryonic development. It functions as a catalytic subunit in multisubunit complexes comprising a BRPF1/2/3 or JADE1/2/3 scaffold protein, and two accessory proteins. BRPF2 has been shown to be important for the HAT activity of HBO1 toward H3K14. Here we demonstrated that BRPF2 can regulate the HAT activity of HBO1 toward free H3 and H4, and nucleosomal H3. Particularly, a short N-terminal region of BRPF2 is sufficient for binding to HBO1 and can potentiate its activity toward H3K14. The crystal structure of the HBO1 MYST domain in complex with this segment of BRPF2 together with the biochemical and cell biological data revealed the key residues responsible for the HBO1-BRPF2 interaction. Our structural and functional data together indicate that the N-terminal region of BRPF2 plays an important role in the binding of HBO1 and a minor role in the binding of nucleosomes, which provide new mechanistic insights into the regulation of the HAT activity of HBO1 by BRPF2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available