4.8 Article

Soft wall-climbing robots

Journal

SCIENCE ROBOTICS
Volume 3, Issue 25, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scirobotics.aat2874

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [51622506, 91848204]
  2. Science and Technology Commission of Shanghai Municipality [16JC1401000]

Ask authors/readers for more resources

Existing robots capable of climbing walls mostly rely on rigid actuators such as electric motors, but soft wall-climbing robots based on muscle-like actuators have not yet been achieved. Here, we report a tethered soft robot capable of climbing walls made of wood, paper, and glass at 90 degrees with a speed of up to 0.75 body length per second and multimodal locomotion, including climbing, crawling, and turning. This soft wall-climbing robot is enabled by (i) dielectric-elastomer artificial muscles that generate fast periodic deformation of the soft robotic body, (ii) electroadhesive feet that give spatiotemporally controlled adhesion of different parts of the robot on the wall, and (iii) a control strategy that synchronizes the body deformation and feet electroadhesion for stable climbing. We further demonstrate that our soft robot could carry a camera to take videos in a vertical tunnel, change its body height to navigate through a confined space, and follow a labyrinth-like planar trajectory. Our soft robot mimicked the vertical climbing capability and the agile adaptive motions exhibited by soft organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available