4.4 Article

Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nima.2016.11.035

Keywords

Free-Electron Lasers; Synchrotron radiation; Numerical optimization; Tapered undulator; Self-seeding; LCLS

Funding

  1. US Department of Energy (DOE) [DE-AC02-76SF00515]
  2. US DOE Office of Science Early Career Research Program [FWP-2013-SLAC-100164]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Physics [1565546] Funding Source: National Science Foundation

Ask authors/readers for more resources

There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a self-seeding crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance in the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available