4.2 Article

Design of a fractional order PID controller with application to an induction motor drive

Journal

Publisher

Tubitak Scientific & Technological Research Council Turkey
DOI: 10.3906/elk-1712-183

Keywords

Fractional order PID; ARX model; nonlinear optimization; Al-Alaoui operator; hardware-in-the-loop; induction motor

Ask authors/readers for more resources

In this paper, a new method for designing a fractional-order proportional-integral-derivative (FO-PID) controller with an application to an induction motor drive is proposed. In the proposed method, the motor drive is modeled using an autoregressive with exogenous input (ARX) model whose parameters are experimentally identified using real I/O data. A genetic algorithm is then used to find the FO-PID parameters. To guarantee the robustness of the controller against load variations, minimax optimization is adopted. To validate the results, the proposed controller is applied to a real-life motor drive using a hardware-in-the-loop (HIL) simulator. The experimental results show that the proposed controller significantly improves the time response of the induction motor compared to a conventional PID controller. It also shows it is robust against motor load variations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available