4.7 Article

Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites

Journal

BRIEFINGS IN BIOINFORMATICS
Volume 19, Issue 5, Pages 1022-1034

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbx020

Keywords

metabolic gene cluster; biosynthetic gene cluster; specialized metabolism; secondary metabolism; natural products; signature enzyme; bacteria; fungi; plant; computational biology

Funding

  1. National Institutes of Health [1U01GM110699-01A1]

Ask authors/readers for more resources

Specialized metabolites (also called natural products or secondary metabolites) derived from bacteria, fungi, marine organisms and plants constitute an important source of antibiotics, anti-cancer agents, insecticides, immunosuppressants and herbicides. Many specialized metabolites in bacteria and fungi are biosynthesized via metabolic pathways whose enzymes are encoded by clustered genes on a chromosome. Metabolic gene clusters comprise a group of physically co-localized genes that together encode enzymes for the biosynthesis of a specific metabolite. Although metabolic gene clusters are generally not known to occur outside of microbes, several plant metabolic gene clusters have been discovered in recent years. The discovery of novel metabolic pathways is being enabled by the increasing availability of high-quality genome sequencing coupled with the development of powerful computational toolkits to identify metabolic gene clusters. To provide a comprehensive overview of various bioinformatics methods for detecting gene clusters, we compare and contrast key aspects of algorithmic logic behind several computational tools, including 'NP.searcher', 'ClustScan', 'CLUSEAN', 'antiSMASH', 'SMURF', 'MIDDAS-M', 'ClusterFinder', 'CASSIS/SMIPS' and 'C-Hunter' among others. We also review additional tools such as 'NRPSpredictor' and 'SBSPKS' that can infer substrate specificity for previously identified gene clusters. The continual development of bioinformatics methods to predict gene clusters will help shed light on how organisms assemble multi-step metabolic pathways for adaptation to various ecological niches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available