4.5 Article

Bubble tracking analysis of PWR two-phase flow simulations based on the level set method

Journal

NUCLEAR ENGINEERING AND DESIGN
Volume 323, Issue -, Pages 68-77

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2017.07.034

Keywords

DNS; Subchannel; Interface tracking; Bubble tracking

Funding

  1. DOE Office of Science User Facility [DE-AC02-06CH11357]

Ask authors/readers for more resources

Bubbly flow is a common natural phenomenon and a challenging engineering problem yet to be fully understood. More insights from either experiments or numerical simulations are desired to better model and predict the bubbly flow behavior. Direct numerical simulation (DNS) has been gaining renewed interests as an attractive approach towards the accurate modeling of two-phase turbulent flows. Though DNS is computationally expensive, it can provide highly reliable data for model development along with experiments. The ever-growing computing power is also allowing us to study flows of increasingly high Reynolds numbers. However, the conventional simulation and analysis methods are becoming inadequate when dealing with such 'big data' generated from large-scale DNS. This paper presents our recent effort in developing the advanced analysis framework for two-phase bubbly flow DNS. It will show how one can take advantage of the 'big data' and translate it into in-depth insights. Specifically, a novel bubble tracking method has been developed, which can collect detailed two-phase flow information at the individual bubble level. Due to the importance of subcooled boiling phenomenon in pressurized water reactors (PWR), the bubbly flow is simulated within a PWR sub-channel geometry with the bubble tracking capability. It has been demonstrated that bubble tracking method significantly improves the data extraction efficiency for level-set based interface tracking simulations. Statistical analysis was introduced to post-process the recorded data to study the dependencies of bubble behavior with local flow dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available