4.6 Article

Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway

Journal

NATURE PLANTS
Volume 4, Issue 1, Pages 46-54

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41477-017-0065-x

Keywords

-

Categories

Funding

  1. ARC Centre of Excellence for Translational Photosynthesis
  2. Australian Science Industry and Endowment Fund (SIEF) [RP04-122]
  3. Natural Science and Engineering Research Council (NSERC) of Canada [154273-2007, 154273-2012]

Ask authors/readers for more resources

Photorespiration is a major bioengineering target for increasing crop yields as it is often considered a wasteful process. Photorespiratory metabolism is integrated into leaf metabolism and thus may have certain benefits. Here, we show that plants can increase their rate of photosynthetic CO2 uptake when assimilating nitrogen de novo via the photorespiratory pathway by fixing carbon as amino acids in addition to carbohydrates. Plants fed NO3- had higher rates of CO2 assimilation under photorespiratory than low-photorespiratory conditions, while plants lacking NO3- nutrition exhibited lower stimulation of CO2 uptake. We modified the widely used Farquhar, von Caemmerer and Berry photosynthesis model to include the carbon and electron requirements for nitrogen assimilation via the photorespiratory pathway. Our modified model improves predictions of photosynthetic CO2 uptake and of rates of photosynthetic electron transport. The results highlight how photorespiration can improve photosynthetic performance despite reducing the efficiency of Rubisco carboxylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available