4.8 Article

Bioinspired Assembly of Carbon Nanotube into Graphene Aerogel with Cabbagelike Hierarchical Porous Structure for Highly Efficient Organic Pollutants Cleanup

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 1, Pages 1093-1103

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b15322

Keywords

graphene aerogel; hierarchical porous structure; organic solvent absorption; carbon nanotubes; recyclability

Funding

  1. National Natural Science Foundation of China [U1362205, U1664251]

Ask authors/readers for more resources

Nowadays, physical absorption has become a feasible method offering an efficient and green route to remove organic pollutants from the industrial wastewater. Inspired by polydopamine (PDA) chemistry, one-dimensional PDA-functionalized multiwalled carbon nanotubes (MWCNT-PDA) were creatively introduced into graphene aerogel framework to synthesize a robust graphene/MWCNT-PDA composite aerogel (GCPCA). The whole forming process needed no additional reducing agents, significantly reducing the contamination emissions to the environment. The GCPCA exhibited outstanding repeatable compressibility, ultralight weight, as well as hydrophobic nature, which were crucial for highly efficient organic pollution absorption. The MWCNTs in moderate amounts can provide the composite aerogels with desirable structure stability and extra specific surface area. Meanwhile, the eventual absorption performance of GCPCAs can be improved by optimizing the microporous structure. In particular, a novel cabbagelike hierarchical porous structure was obtained as the prefreezing temperature was decreased to -80 degrees C. The miniaturization of pore size around the periphery of GCPCA enhanced the capillary flow in aerogel channels, and the super-absorption capacity for organic solvents was up to 501 times (chloroform) its own mass. Besides, the GCPCAs exhibited excellent reusable performance in absorption squeezing, absorption combustion, and absorption distillation cycles according to the characteristic of different organic solvents. Because of the viable synthesis method, the resulting GCPCAs with unique performance possess broad and important application prospects, such as oil pollution cleanup and treatment of chemical industrial wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available