4.5 Article

City Compactness: Assessing the Influence of the Growth of Residential Land Use

Journal

JOURNAL OF URBAN TECHNOLOGY
Volume 25, Issue 1, Pages 21-46

Publisher

ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
DOI: 10.1080/10630732.2017.1390299

Keywords

Compact city; residential land use growth; artificial neural networks; weight of evidence; GIS; remote sensing

Categories

Funding

  1. Ministry of Higher Education of Malaysia

Ask authors/readers for more resources

In the urban sprawl paradigm, residential land use exhibits a more significant growth than other categories. Consequently, large proportions of the natural environment are converted to residential areas, particularly in tropical countries. Compact urban development is one of the most sustainable urban forms with environmental perspectives, such as rural development containment and natural environment preservation. However, no proper investigation of the relationship and influence of residential growth and city compactness is available. This study evaluated and forecasted the residential development of Kajang City in Malaysia based on compact development. First, the relationship between residential land use change and city compactness was evaluated. Second, residential growth was projected by utilizing the land transformation model (LTM) and the statistical-based weight of evidence (WoE) using various spatial parameters. Both models were evaluated with respect to observed land use and compactness maps. Results indicated that most of the newly developed residential areas were in zones where the degrees of compactness increase during certain periods. In addition, LTM performed better and provided a more accurate modeling of residential growth than the WoE. However, WoE provided clearer and more informative results than LTM in terms of functional relationships between dependent and independent variables related to city compactness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available