4.7 Article

Nonlinear responses of chiral fluids from kinetic theory

Journal

PHYSICAL REVIEW D
Volume 97, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.97.016004

Keywords

-

Funding

  1. Japan Society of Promotion of Science (JSPS) [15H03652, 16K17716, 17H06462]
  2. RIKEN iTHES Project
  3. iTHEMS Program
  4. JSPS [JP16F16320]
  5. RIKEN Foreign Postdoctoral Researcher program
  6. Grants-in-Aid for Scientific Research [16K17716, 17H06462, 15H03652] Funding Source: KAKEN

Ask authors/readers for more resources

The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available