4.6 Article

Time-dependent Markovian quantum master equation

Journal

PHYSICAL REVIEW A
Volume 98, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.98.052129

Keywords

-

Funding

  1. National Science Foundation
  2. NSF [PHY-1748958]
  3. Israel Science Foundation [2244/14]

Ask authors/readers for more resources

We construct a quantum Markovian master equation for a driven system coupled to a thermal bath. The derivation utilizes an explicit solution of the propagator of the driven system. This enables the validity of the master equation to be extended beyond the adiabatic limit. The nonadiabatic master equation (NAME) is derived employing the weak system-bath coupling limit. The NAME is valid when a separation of timescales exists between the bath dynamics and the external driving. In contrast to the adiabatic master equation, the NAME leads to coupled equations of motion for the population and coherence. We employ the NAME to solve the example of an open driven time-dependent harmonic oscillator. For the harmonic oscillator the NAME predicts the emergence of coherence associated with the dissipation term. As a result of the nonadiabatic driving the thermalization rate is suppressed. The solution is compared with both numerical calculations and the adiabatic master equation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available