4.4 Article

Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas

Journal

ENDOCRINE-RELATED CANCER
Volume 22, Issue 5, Pages 735-744

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1530/ERC-15-0321

Keywords

ATP1A1; CACNA1D; KCNJ5; primary aldosteronism; aldosterone-producing adenoma

Funding

  1. Swedish Cancer Society
  2. Swedish Research Council
  3. Selander Foundation
  4. LIONS cancer research fund

Ask authors/readers for more resources

Aldosterone-producing adenomas (APAs) are found in 1.5-3.0% of hypertensive patients in primary care and can be cured by surgery. Elucidation of genetic events may improve our understanding of these tumors and ultimately improve patient care. Approximately 40% of APAs harbor a missense mutation in the KCNJ5 gene. More recently, somatic mutations in CACNA1D, ATP1A1 and ATP2B3, also important for membrane potential/intracellular Ca2+ regulation, were observed in APAs. In this study, we analyzed 165 APAs for mutations in selected regions of these genes. We then correlated mutational findings with clinical and molecular phenotype using transcriptome analysis, immunohistochemistry and semiquantitative PCR. Somatic mutations in CACNA1D in 3.0% (one novel mutation), ATP1A1 in 6.1% (six novel mutations) and ATP2B3 in 3.0% (two novel mutations) were detected. All observed mutations were located in previously described hotspot regions. Patients with tumors harboring mutations in CACNA1D, ATP1A1 and ATP2B3 were operated at an older age, were more often male and had tumors that were smaller than those in patients with KCNJ5 mutated tumors. Microarray transcriptome analysis segregated KCNJ5 mutated tumors from ATP1A1/ATP2B3 mutated tumors and those without mutation. We observed significant transcription upregulation of CYP11B2, as well as the previously described glomerulosa-specific gene NPNT, in ATP1A1/ATP2B3 mutated tumors compared to KCNJ5 mutated tumors. In summary, we describe novel somatic mutations in proteins regulating the membrane potential/intracellular Ca2+ levels, and also a distinct mRNA and clinical signature, dependent on genetic alteration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available