3.8 Proceedings Paper

Defect Detection in Additively Manufactured Components: Laser Ultrasound and Laser Thermography Comparison

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.prostr.2017.12.016

Keywords

Additive Manufacturing; IR Thermography; Laser Ultrasound; Defect Sensitivity

Ask authors/readers for more resources

Despite continuous technological advances in additive manufacturing, the lack of non-destructive inspection techniques during the manufacturing process is a limit for the industrial breakthroughs. Additive manufacturing is mainly used in industrial sectors where the zero defect target is crucial. The inclusion of the integrity assessment into the additive manufacturing process would allow corrective actions to be performed before the component is completed. To this end, the development of in-process monitoring and processing techniques is of great interest. This work proposes and compares two remote non-destructive inspection techniques: laser ultrasound and laser thermography. The two techniques are evaluated on Inconel samples with laser drilling holes to establish their sensitivity. Experimental results show that those discontinuities are efficiently detected with both techniques. The remote inspection by optical methods would allow the integration of the evaluation system into the additive manufacturing equipment, thus allowing continuous monitoring throughout the entire production process. Potential benefits and limitations of the two techniques are discussed. Copyright (C) 2018 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available