4.6 Article

Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots

Journal

NEW PHYTOLOGIST
Volume 220, Issue 4, Pages 1285-1295

Publisher

WILEY
DOI: 10.1111/nph.14931

Keywords

agriculture; arbuscular mycorrhizal fungi (AMF); greenhouse gas; hyphosphere; N cycle; nitrification; nitrogen (N); nitrous oxide (N2O)

Categories

Funding

  1. Biotechnology and Biological Sciences Research Council, UK [BB/GO16801/1]
  2. British Mycological Society

Ask authors/readers for more resources

Nitrous oxide (N2O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N2O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N2O production was measured both before and after addition of ammonium and nitrate. In both experiments, N2O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N2O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N2O was produced following nitrate application to either AMF treatment. Thus, the main N2O source in this system appeared to be via nitrification, and the production of N2O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N2O production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available