4.7 Article

Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 18, Issue 24, Pages 18023-18042

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-18-18023-2018

Keywords

-

Funding

  1. US Department of Energy (DOE) ARM [2016-6841, 2016-6884, 2016-6875]
  2. Atmospheric Systems Research (ASR) [DE-SC0013306]
  3. NOAA Physical Sciences Division (PSD)
  4. Early-Career Research Fellowship from the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine
  5. Office of Biological and Environmental Research of the US DOE
  6. DOE [DE-AC06-76RL0 1830]
  7. Michigan Space Grant Consortium

Ask authors/readers for more resources

Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphysical properties and can therefore impact cloud radiative forcing (CRF) and precipitation formation processes. In remote regions such as the Arctic, aerosol-cloud interactions are severely understudied yet may have significant implications for the surface energy budget and its impact on sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. We present results from a campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a US Department of Energy Atmospheric Radiation Measurement (DOE ARM) facility in the northern Alaskan Arctic. Three time-and size-resolved aerosol impactors were deployed from 1 March to 31 May 2017 for offline ice nucleation and chemical analyses and were co-located with routine measurements of aerosol number and size. The largest particles (i.e., >= 3 mu m or coarse mode) were the most efficient INPs by inducing freezing at the warmest temperatures. During periods with snow-and ice-covered surfaces, coarse mode INP concentrations were very low (maximum of 6 x 10(-4) L-1 at 15 degrees C), but higher concentrations of warm-temperature INPs were observed during late May (maximum of 2 x 10(-2) L-1 at 15 degrees C). These higher concentrations were attributed to air masses originating from over open Arctic Ocean water and tundra surfaces. To our knowledge, these results represent the first INP characterization measurements in an Arctic oilfield location and demonstrate strong influences from mineral and marine sources despite the relatively high springtime pollution levels. Ultimately, these results can be used to evaluate the anthropogenic and natural influences on aerosol composition and Arctic cloud properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available