4.6 Article

Effective treatment of emulsified oil wastewater by the coagulation- flotation process

Journal

RSC ADVANCES
Volume 8, Issue 71, Pages 40639-40646

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra06565a

Keywords

-

Funding

  1. National Natural Science Foundation of China [51508268]
  2. Natural Science Foundation of the Jiangsu Province in China [BK20150951]
  3. National Key Research and Development Program of China [2017YFB0602500]
  4. 2018 Six Talent Peaks Project of Jiangsu Province [JNHB-038]

Ask authors/readers for more resources

Ship emulsified oil wastewater was used as the research object in this study. The highly efficient coagulant demulsification degreasing mechanism and microbubble flotation technology were combined and the effects of coagulant type and dosage amount on the demulsification of emulsified oil wastewater were evaluated. The influence of the mixed coagulation effect of pH values, temperature, and hydraulic condition parameters were determined and water intake, air intake, and oil content were regulated. The coagulant for the demulsification of emulsified oil wastewater was screened; the dosage was 500 mg L-1, and the removal capacity of the coagulant was in the following order: polyaluminum ferric chloride (PAFC) > polyaluminum chloride (PAC) > polysilicate aluminum ferric sulfate (PSAFS) > alum > Al-2(SO4)(3) > polyferric sulfate > FeCl3. Polyacrylamide (PAM) with added water was used to further reduce the oil content. The PAFC, PAC, and PSAFS were selected as coagulation-air flotation dynamic test alternative agents. The investment quantities of PAFC, PSAFS and PAM were 300 mg L-1, 300 mg L-1 and 30 mg L-1, respectively. The stirring time was 5 min, the pH value was 6.5-6.9, the flow rate was 0.25 m(3) h(-1), the oil content of the emulsified oil wastewater was 3000-5000 mg L-1 and the effluent oil was stable below 15 ppm. The microbubble generation device using air flotation effluent was used in the two air flotation treatments to enhance the device efficiency. The air flotation device adopted the structural design of the upper part of the water inlet and the lower part of the micro-air bubble, which can increase the collision probability of the microbubble and improve the efficiency of oil removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available