4.7 Article

Graphene Facilitates Biomethane Production from Protein-Derived Glycine in Anaerobic Digestion

Journal

ISCIENCE
Volume 10, Issue -, Pages 158-+

Publisher

CELL PRESS
DOI: 10.1016/j.isci.2018.11.030

Keywords

-

Funding

  1. European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [797259]
  2. Science Foundation Ireland (SFI) through the Centre for Marine and Renewable Energy (MaREI) [12/RC/2302, 16/SP/3829]
  3. National Key Research and Development Program-China [2016YFE0117900]
  4. Zhejiang Provincial Key Research and Development Program-China [2017C04001]
  5. ERVIA
  6. Gas Networks Ireland (GNI) through the Gas Innovation Group
  7. National Science Foundation for Young Scientists of China [51606021]

Ask authors/readers for more resources

Interspecies electron transfer is a fundamental factor determining the efficiency of anaerobic digestion (AD), which involves syntrophy between fermentative bacteria and methanogens. Direct interspecies electron transfer (DIET) induced by conductive materials can optimize this process offering a significant improvement over indirect electron transfer. Herein, conductive graphene was applied in the AD of protein-derived glycine to establish DIET. The electron-producing reaction via DIET is thermodynamically more favorable and exhibits a more negative Gibbs free energy value (- 60.0 kJ/mol) than indirect hydrogen transfer (-33.4 kJ/mot). The Gompertz model indicated that the kinetic parameters exhibited linear correlations with graphene addition from 0.25 to 1.0 g/L, leading to the highest increase in peak biomethane production rate of 28%. Sedimentibacter (7.8% in abundance) and archaea Methanobacterium (71.1%) and Methanosarcina (11.3%) might be responsible for DIET. This research can open up DIET to a range of protein-rich substrates, such as algae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available