4.0 Article

A New Competitive Binary Grey Wolf Optimizer to Solve the Feature Selection Problem in EMG Signals Classification

Journal

COMPUTERS
Volume 7, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/computers7040058

Keywords

feature selection; electromyography; grey wolf optimizer; binary grey wolf optimization; classification; time-frequency feature

Funding

  1. Minister of Higher Education Malaysia (MOHE) [FRGS/1/2017/TK04/FKE-CeRIA/F00334]

Ask authors/readers for more resources

Features extracted from the electromyography (EMG) signal normally consist of irrelevant and redundant features. Conventionally, feature selection is an effective way to evaluate the most informative features, which contributes to performance enhancement and feature reduction. Therefore, this article proposes a new competitive binary grey wolf optimizer (CBGWO) to solve the feature selection problem in EMG signals classification. Initially, short-time Fourier transform (STFT) transforms the EMG signal into time-frequency representation. Ten time-frequency features are extracted from the STFT coefficient. Then, the proposed method is used to evaluate the optimal feature subset from the original feature set. To evaluate the effectiveness of proposed method, CBGWO is compared with binary grey wolf optimization (BGWO1 and BGWO2), binary particle swarm optimization (BPSO), and genetic algorithm (GA). The experimental results show the superiority of CBGWO not only in classification performance, but also feature reduction. In addition, CBGWO has a very low computational cost, which is more suitable for real world application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available