4.5 Article

DECELLULARISED TISSUES OBTAINED BY A CO2-PHILIC DETERGENT AND SUPERCRITICAL CO2

Journal

EUROPEAN CELLS & MATERIALS
Volume 36, Issue -, Pages 81-95

Publisher

AO RESEARCH INSTITUTE DAVOS-ARI
DOI: 10.22203/eCM.v036a07

Keywords

Decellularisation; supercritical carbon dioxide; extracellular matrix; articular cartilage; tendon; skin

Funding

  1. Swiss National Science Foundation [200021_150190, IZLCZ3_156126]
  2. Lausanne Orthopaedic Research Foundation (LORF)
  3. MD-PhD Leenaards grant
  4. Swiss National Science Foundation (SNF) [IZLCZ3_156126, 200021_150190] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Tissue decellularisation has gained much attention in regenerative medicine as an alternative to synthetic materials. In decellularised tissues, biological cues can be maintained and provide cellular environments still unmet by synthetic materials. Supercritical CO2 (scCO(2)) has recently emerged as a promising alternative decellularisation technique to aggressive detergents; in addition, scCO(2) provides innate sterilisation. However, to date, decellularisation with scCO(2) is limited to only a few tissue types with low cellular density. In the current study, a scCO(2) technique to decellularise high density tissues, including articular cartilage, tendon and skin, was developed. Results showed that most of the cellular material was removed, while the sample structure and biocompatibility was preserved. The DNA content was reduced in cartilage, tendon and skin as compared to the native tissue. The treatment did not affect the initial tendon elastic modulus [reduced from 126.35 +/- 9.79 MPa to 113.48 +/- 8.48 MPa (p > 0.05)], while it reduced the cartilage one [from 12.06 +/- 2.14 MPa to 1.17 +/- 0.34 MPa (p < 0.0001)]. Interestingly, cell adhesion molecules such as fibronectin and laminin were still present in the tissues after decellularisation. Bovine chondrocytes were metabolically active and adhered to the surface of all decellularised tissues after 1 week of cell culture. The developed method has the potential to become a cost-effective, one-step procedure for the decellularisation of dense tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available