3.8 Proceedings Paper

Adjacent Network for Semantic Segmentation of Liver CT Scans

Publisher

IEEE
DOI: 10.1109/BIBE.2018.00015

Keywords

Convolutional neural networks; spatial information; medical image application

Funding

  1. UNIPRS
  2. UNRSC 50:50

Ask authors/readers for more resources

Fully convolutional neural networks have shown remarkable success in performing semantic segmentation. The use of convolutional layers for the entire architecture and skip connections to combine different resolution features or predictions have been adopted in successful networks, such as U-Net and DenseNet. However, these models employ several max-pooling layers that cause the network to lose spatial information and require them to mimic an autoencoder architecture to perform semantic segmentation at the original input resolution. In this paper, we propose a network that extracts features automatically with convolutional layers, like the fully convolutional neural network, but retains the spatial information of each of the extracted features. It then utilises the extracted features to make predictions with an efficient upsampling method. We evaluate the network performance on a liver segmentation task where it performs with comparable accuracy to other state-of-the-art networks while being much smaller in terms of the number of parameters as well as faster in computation time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available