4.4 Article

Martingale theory for housekeeping heat

Journal

EPL
Volume 124, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1209/0295-5075/124/60006

Keywords

-

Ask authors/readers for more resources

e The housekeeping heat is the energy exchanged between a system and its environment in a nonequilibrium process that results from the violation of detailed balance. We describe fluctuations of the housekeeping heat in mesoscopic systems using the theory of martingales, a mathematical framework widely used in probability theory and finance. We show that the exponentiated housekeeping heat (in units of k(B)T, with k(B) the Boltzmann constant and T the temperature) of a Markovian nonequilibrium process under arbitrary time-dependent driving is a martingale process. From this result, we derive universal equalities and inequalities for the statistics of stopping times and suprema of the housekeeping heat. We test our results with numerical simulations of a system driven out of equilibrium and described by Langevin dynamics. Copyright (C) EPLA, 2019

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available