4.8 Article

Regulation of Thalamic and Cortical Network Synchrony by Scn8a

Journal

NEURON
Volume 93, Issue 5, Pages 1165-+

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2017.01.031

Keywords

-

Categories

Funding

  1. Epilepsy Foundation [299208]
  2. NIH [NS007280]
  3. National Institutes of Health [R01NS048336, R01NS065187, R01NS034774, R01NS072221]
  4. NINDS [P30N5055077]

Ask authors/readers for more resources

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available