4.8 Article

Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing

Journal

NEURON
Volume 96, Issue 4, Pages 856-+

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2017.10.014

Keywords

-

Categories

Funding

  1. NIH [NS028901, DC004450, P30NS061800]
  2. Japan-U.S. Brain Research Cooperation Program
  3. Grants-in-Aid for Scientific Research [16K08513] Funding Source: KAKEN

Ask authors/readers for more resources

Action potentials clustered into high-frequency bursts play distinct roles in neural computations. However, little is known about ionic currents that control the duration and probability of these bursts. We found that, in cartwheel inhibitory interneurons of the dorsal cochlear nucleus, the likelihood of bursts and the interval between their spikelets were controlled by Ca2+ acting across two nanodomains, one between plasma membrane P/Q Ca2+ channels and endoplasmic reticulum (ER) ryanodine receptors and another between ryanodine receptors and large-conductance, voltage- and Ca2+-activated K+ (BK) channels. Each spike triggered Ca2+-induced Ca2+ release (CICR) from the ER immediately beneath somatic, but not axonal or dendritic, plasma membrane. Moreover, immunolabeling demonstrated close apposition of ryanodine receptors and BK channels. Double-nanodomain coupling between somatic plasma membrane and hypolemmal ER cisterns provides a unique mechanism for rapid control of action potentials on the millisecond timescale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available