4.4 Article

Genetic enhancement of lodging resistance in rice due to the key cell wall polymer lignin, which affects stem characteristics

Journal

BREEDING SCIENCE
Volume 68, Issue 5, Pages 508-515

Publisher

JAPANESE SOC BREEDING
DOI: 10.1270/jsbbs.18050

Keywords

cell wall; genetic modification; lignin; lodging resistance; rice (Oryza sativa L.); stem characteristics

Funding

  1. National Natural Science Foundation of China [31700259]
  2. Doctoral Scientific Research Foundation of Liaoning Province [201601107]

Ask authors/readers for more resources

Lodging in crops seriously restricts plant growth and grain production. The genetic modification of cell walls to enhance plant mechanical strength has been suggested as a promising approach toward improving lodging resistance. However, because of the complexity of the plant cell wall, the exact effects of its polymers on plant lodging resistance remain elusive. To address this issue, we performed large-scale analyses of a total of 56 rice (Oryza sativa L.) varieties that displayed distinct cell wall component and lodging index. Lignin was identified as the key cell wall polymer that positively determines lodging resistance in rice. Correlation analysis between cell wall composition and plant morphological characteristics revealed that lignin enhanced rice lodging resistance by largely increasing the mechanical strength of the basal stem and reducing plant height. Further characterization of four representative rice varieties, ShenNong9903, YanJian218, KongYu131, and ShenNongK33, displaying varied levels of lodging resistance, revealed the multiple candidate genes (PAL, CoMT, 4CL3, CAD2, CAD7 and CCR20) responsible for increasing lignin level. Hence. our results demonstrate that the high lignin level in the cell wall predominately improves lodging resistance and suggest target genes for the genetic modification of lignin towards breeding rice with high lodging resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available