4.8 Article

Tailoring green and sintered density of pure iron parts using binder jetting additive manufacturing

Journal

ADDITIVE MANUFACTURING
Volume 24, Issue -, Pages 508-520

Publisher

ELSEVIER
DOI: 10.1016/j.addma.2018.10.015

Keywords

Binder jetting; Additive manufacturing; Irregular iron powder; Sintering schedule; Part density

Funding

  1. Federal Economic Development Agency for Southern Ontario (FedDev Ontario), Canada
  2. Rio Tinto, Canada

Ask authors/readers for more resources

Binder jetting additive manufacturing (BJAM) is a comparatively low-cost process that enables manufacturing of complex and customizable metal parts. This process is applied to low-cost water-atomized iron powder with the goal of understanding the effects of printing parameters and sintering schedule on maximizing the green and sintered densities of manufactured samples, respectively. The powder is characterized by using scanning electron microscopy (SEM) and particle size analysis (Camsizer X2). In the AM process, the effects of powder compaction, layer thickness, and liquid binder level on green part density are investigated. Post-process heat treatment is applied to selected samples, and suitable debinding parameters are studied by using thermo-gravimetric analysis (TGA). Sintering at various temperatures and durations results in densities of up to 91.3%. Image processing of x-ray computed tomography (mu CT) scans of the samples reveals that porosity distribution is affected by powder spreading, and gradients in pore distribution in the sample are largely reduced after sintering. The resulting shrinkage ranges between 6.7 +/-+/- 3.0% and 25.3 +/- 2.8%, while surface roughness ranges between 11.6 +/- 5.0 mu m and 32.1 +/- 3.4 mu m. The results indicate that the sintering temperature and time might be tailored to achieve target densities anywhere in the range of 64% and 91%, with possibly higher densities by increasing sintering time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available