4.3 Article

VEGF-Mediated Cognitive and Synaptic Improvement in Chronic Cerebral Hypoperfusion Rats Involves Autophagy Process

Journal

NEUROMOLECULAR MEDICINE
Volume 19, Issue 2-3, Pages 423-435

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12017-017-8458-6

Keywords

Chronic cerebral hypoperfusion; VEGF; Cognition; Synaptic function; Autophagy

Categories

Funding

  1. National Natural Science Foundation of China [31500865, 91520205]
  2. Tianjin Municipal Natural Science Foundation [17JCQNJC10500]

Ask authors/readers for more resources

Chronic cerebral hypoperfusion (CCH) is associated with various neurodegenerative diseases characterized by cognitive impairment. Dozens of studies including ours have indicated that exogenous administration of vascular endothelial growth factor (VEGF) could exert effective cognitive protection during ischemia. Nevertheless, the underlying mechanism has not been well clarified. To address this issue, we explored the synaptic mechanisms in vivo since hippocampal synaptic function is essential to the learning and memory process. Besides, the role of autophagy in cognitive dysfunction under conditions of CCH is still controversial. And abnormal autophagy could threaten normal neurotransmission at synapse where a large amount of protein synthesis and degradation take place. Hence, we further examined whether the altered synaptic function was associated with autophagy. The results showed that CCH impaired spatial cognition as evidenced in Morris water maze. We further found that VEGF mitigated impaired hippocampal synaptic function including basal synaptic transmission, paired-pulse facilitation, short-term, long-term plasticity, depotentiation, and the level of synaptic proteins as assessed by electrophysiological examination and western blot assay. Furthermore, our results demonstrated that CCH could induce excessive autophagy which could be inhibited by VEGF. Thus, we speculated that VEGF could ameliorate impaired synaptic function induced by CCH because of its ability to inhibit excessive autophagy, and eventually improve spatial learning and memory function. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the usage of VEGF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available