3.8 Proceedings Paper

Multi-User Mobile Sequential Recommendation: An Efficient Parallel Computing Paradigm

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3219819.3220111

Keywords

Mobile sequential recommendation; parallel computing; simulated annealing; potential travel distance

Funding

  1. National Natural Science Foundation of China (NSFC) [91746109]

Ask authors/readers for more resources

The classic mobile sequential recommendation (MSR) problem aims to provide the optimal route to taxi drivers for minimizing the potential travel distance before they meet next passengers. However, the problem is designed from the view of a single user and may lead to overlapped recommendations and cause traffic problems. Existing approaches usually contain an offline pruning process with extremely high computational cost, given a large number of pick-up points. To this end, we formalize a new multi-user MSR (MMSR) problem that locates optimal routes for a group of drivers with different starting positions. We develop two efficient methods, PSAD and PSAD-M, for solving the MMSR problem by ganging parallel computing and simulated annealing. Our methods outperform several existing approaches, especially for high-dimensional MMSR problems, with a record-breaking performance of 180x speedup using 384 cores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available