3.8 Proceedings Paper

Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3269206.3271725

Keywords

Social Recommender Systems; Implicit Friends; Heterogeneous Networks; Social Networks

Funding

  1. National Science Foundation (NSF) [1614576]
  2. Graduate Scientific Research and Innovation Foundation of Chongqing [cys17035]
  3. China Scholarship Council

Ask authors/readers for more resources

The explicitly observed social relations from online social platforms have been widely incorporated into recommender systems to mitigate the data sparsity issue. However, the direct usage of explicit social relations may lead to an inferior performance due to the unreliability (e.g., noises) of observed links. To this end, the discovery of reliable relations among users plays a central role in advancing social recommendation. In this paper, we propose a novel approach to adaptively identify implicit friends toward discovering more credible user relations. Particularly, implicit friends are those who share similar tastes but could be distant from each other on the network topology of social relations. Methodologically, to find the implicit friends for each user, we first model the whole system as a heterogeneous information network, and then capture the similarity of users through the meta-path based embedding representation learning. Finally, based on the intuition that social relations have varying degrees of impact on different users, our approach adaptively incorporates different numbers of similar users as implicit friends for each user to alleviate the adverse impact of unreliable social relations for a more effective recommendation. Experimental analysis on three real-world datasets demonstrates the superiority of our method and explain why implicit friends are helpful in improving social recommendation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available