4.8 Article

Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

Journal

EMBO JOURNAL
Volume 34, Issue 22, Pages 2840-2861

Publisher

WILEY
DOI: 10.15252/embj.201591593

Keywords

Parkinson's disease; phosphoproteomics; PINK1; Rab GTPases

Funding

  1. NIGMS [P41-GM103311]
  2. Wellcome Trust Senior Research Fellowship in Clinical Science [101022/Z/13/Z]
  3. Medical Research Council (MRC), UK [MC_UU_12016/5]
  4. BBSRC BBR Grant [BB/L020742/1]
  5. German Research Foundation (DFG) [SFB1035, B05]
  6. Investissements d'avenir [ANR-10-IAIHU-06]
  7. Medical Research Council
  8. Wellcome Trust
  9. Parkinson's UK
  10. Michael J. Fox Foundation
  11. Tenovus Scotland
  12. Wellcome/MRC PD consortium grant
  13. AstraZeneca
  14. Boehringer-Ingelheim
  15. GlaxoSmithKline
  16. Merck KGaA
  17. Janssen Pharmaceutica
  18. Pfizer
  19. BBSRC [BB/G022682/1, BB/J019364/1, BB/L020742/1] Funding Source: UKRI
  20. MRC [MC_UU_12016/5, G1100713, MC_UP_A500_1020] Funding Source: UKRI
  21. Biotechnology and Biological Sciences Research Council [BB/G022682/1, BB/J019364/1, BB/L020742/1] Funding Source: researchfish
  22. Medical Research Council [MC_UP_A500_1020, G1100713, MC_UU_12016/5, 973992] Funding Source: researchfish
  23. Parkinson's UK [H-1403, G-1506] Funding Source: researchfish

Ask authors/readers for more resources

Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 invitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity invivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available