4.8 Article

Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition

Journal

EMBO JOURNAL
Volume 34, Issue 6, Pages 778-797

Publisher

WILEY
DOI: 10.15252/embj.201489524

Keywords

chaperones; protein aggregation; protein disaggregation; proteostasis; ubiquitin-proteasome system

Funding

  1. Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS)
  2. fellowship of the Boehringer Ingelheim Fonds
  3. Deutsche Forschungsgemeinschaft [SFB1036]

Ask authors/readers for more resources

Disruption of the functional protein balance in living cells activates protective quality control systems to repair damaged proteins or sequester potentially cytotoxic misfolded proteins into aggregates. The established model based on Saccharomyces cerevisiae indicates that aggregating proteins in the cytosol of eukaryotic cells partition between cytosolic juxtanuclear (JUNQ) and peripheral deposits. Substrate ubiquitination acts as the sorting principle determining JUNQ deposition and subsequent degradation. Here, we show that JUNQ unexpectedly resides inside the nucleus, defining a new intranuclear quality control compartment, INQ, for the deposition of both nuclear and cytosolic misfolded proteins, irrespective of ubiquitination. Deposition of misfolded cytosolic proteins at INQ involves chaperone-assisted nuclear import via nuclear pores. The compartment-specific aggregases, Btn2 (nuclear) and Hsp42 (cytosolic), direct protein deposition to nuclear INQ and cytosolic (CytoQ) sites, respectively. Intriguingly, Btn2 is transiently induced by both protein folding stress and DNA replication stress, with DNA surveillance proteins accumulating at INQ. Our data therefore reveal a bipartite, inter-compartmental protein quality control system linked to DNA surveillance via INQ and Btn2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available