4.6 Article

A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 44, Pages 21933-21940

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta07809b

Keywords

-

Funding

  1. Georgia Institute of Technology
  2. National Science Foundation [ECCS-1542174]
  3. China Scholarship Council [201706080048]
  4. Ministry of Science and Technology [107-2917-I-564-040]

Ask authors/readers for more resources

Rechargeable, Zn-based aqueous batteries because of their advantages of inflammability, high energy density, and low material cost are an attractive alternative to lithium-ion and lead-acid batteries for transportation and grid-scale applications. Historically, zinc anodes have shown low utilization and rechargeability in alkaline electrolytes due to the problems of ZnO passivation and Zn(OH)(4)(2-) dissolution. Herein, we report a nanoscale, pomegranate-structured Zn anode (Zn-pome) fabricated via a bottom-up microemulsion approach to overcome these problems. In the Zn-pome, primary ZnO nanoparticles (ZnO NPs) assemble into secondary clusters after which they are individually encapsulated by a conductive, microporous carbon framework. The small size of ZnO NPs overcomes the issue of passivation, whereas the secondary structure and ion-sieving carbon shell mitigate the dissolution problem. Inductively coupled plasma (ICP) analysis confirms that Zn dissolution from the Zn-pome anode is effectively suppressed, leading to a considerably prolonged cycle life compared to that of a conventional ZnO anode in an alkaline aqueous electrolyte. The Zn-pome anode even maintains the capacity after long resting. This performance is achieved in harsh yet practical conditions: a limited amount of electrolyte, sealed coin cells, and 100% depth of discharge (DOD). This study represents an important step towards producing aqueous, rechargeable, high-energy batteries. In addition, the design principles reported here can be applied to other battery systems involving passivation or dissolution intermediates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available