4.6 Article

Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm

Journal

NEUROCOMPUTING
Volume 249, Issue -, Pages 72-85

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2017.03.023

Keywords

Solar greenhouse; Support vector machine; Radial basis function; Convex bidirectional extreme learning machine

Ask authors/readers for more resources

Predictions regarding the solar greenhouse temperature and humidity are important because they play a critical role in greenhouse cultivation. On account of this, it is important to set up a predictive model of temperature and humidity that would precisely predict the temperature and humidity, reducing potential financial losses. This paper presents a novel temperature and humidity prediction model based on convex bidirectional extreme learning machine (CB-ELM). Simulation results show that the convergence rate of the bidirectional extreme learning machine (B-ELM) can further be improved while retaining the same simplicity, by simply recalculating the output weights of the existing nodes based on a convex optimization method when a new hidden node is randomly added. The performance of the CB-ELM model is compared with other modeling approaches by applying it to predict solar greenhouse temperature and humidity. The experiment results show that the CB-ELM model predictions are more accurate than those of the B-ELM, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), and Radial Basis Function (RBF). Therefore, it can be considered as a suitable and effective method for predicting the solar greenhouse temperature and humidity. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available