4.6 Article

Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks

Journal

NEUROCOMPUTING
Volume 257, Issue -, Pages 128-135

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2016.11.066

Keywords

Ultrasonic signal classification; Feature extraction; Wavelet transform; Deep convolutional neural networks

Funding

  1. [MOE2013-TIF-2-G-003]

Ask authors/readers for more resources

Automated ultrasonic signal classification systems are finding increasing use in many applications for the recognition of large volumes of inspection signals. Wavelet transform is a well-known signal processing technique in fault signal diagnosis system. Most of the proposed approaches have mainly used low-level handcraft features based on wavelet transform to encode the information for different defect classes. In this paper, we proposed a deep learning based framework to classify ultrasonic signals from carbon fiber reinforced polymer (CFRP) specimens with void and delamination. In our proposed algorithm, deep Convolutional Neural Networks (CNNs) are used to learn a compact and effective representation for each signal from wavelet coefficients. To yield superior results, we proposed to use a linear SVM top layer in the training process of signal classification task. The experimental results demonstrated the excellent performance of our proposed algorithm against the classical classifier with manually generated attributes. In addition, a post processing scheme is developed to interpret the classifier outputs with a C-scan imaging process and visualize the locations of defects using a 3D model representation. (C) 2017 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available