4.6 Article

Synthesis of Superparamagnetic Cu0.4Zn0.6Fe2O4-Implanted Bi2S3-Capped TiO2 2D and 3D Nanostructures for Visible Light Photocatalysis

Journal

ACS OMEGA
Volume 3, Issue 12, Pages 18958-18966

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.8b01877

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi [21(0887)/12/EMR-II]
  2. CSIR

Ask authors/readers for more resources

Sharp narrow nanopetal-like and wrinkled nanoball-like cubic Cu0.4Zn0.6Fe2O4-implanted orthorhombic Bi2S3-capped anatase TiO2 heterostructures have been synthesized by a two-step hydrothermal process in acidic and basic environments. They have been characterized by high-resolution scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, selected area electron and powder X-ray diffractometries, vibrating sample magnetometry, UV-visible diffuse reflectance and photoluminescence spectroscopies, and nitrogen adsorption-desorption analysis. Both the nanostructured composites are superparamagnetic. While the nanocomposite synthesized in acidic environment absorbs in the entire visible and UV spectral regions, the absorption edge of nanocomposite obtained in basic environment narrowly misses the red end of the visible spectrum. The emission spectra of both the nanomaterials are strikingly similar, indicating similar crystal defects in anatase TiO2 lattice of both the nanocomposites. Although both the nanocomposites degrade dye under visible light, the photocatalytic activity of the sample obtained in acidic environment is superior to that prepared in basic condition. The enhanced photocatalytic activity of the nanocomposite synthesized in acidic environment is rationalized in terms of nanostructure, surface area, and optical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available