4.7 Article

Nitrate Salt Assisted Fabrication of Highly N-Doped Carbons for High-Performance Sodium Ion Capacitors

Journal

ACS APPLIED ENERGY MATERIALS
Volume 1, Issue 10, Pages 5636-5645

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.8b01166

Keywords

sodium ion capacitors; nitrogen doping; biopolymer; nitrate salt activation; capacitive storage

Funding

  1. National Natural Science Foundation of China [21471139, 51602150]
  2. Fundamental Research Funds for the Central Universities [201822008]
  3. Natural Science Foundation of Jiangsu Province [BK20161005]

Ask authors/readers for more resources

Hybrid sodium ion capacitors have been considered promising energy storage devices with superior energy and power performances by combining the advantages of batteries and supercapacitors. However, it is desirable to design anode materials with large specific capacity and excellent rate performance. Herein, we provide a large scalable process to create the highly N-doped carbons by employing k-carrageenan as precursor and alkali metal nitrate as activating agent and dopant. Remarkably, the nitrate salt assisted synthesis process leads to a high nitrogen content of 8.6-12.6 at. % in the carbon framework. When applied as an anode for a sodium ion battery, the carbon delivers a high reversible capacity of 419 mA h g(-1) at 50 mA g(-1). The kinetics analysis manifests that the capacity contribution is mainly from capacitive storage, resulting in an excellent rate performance, e.g., 131 mA h g(-1) at 10 A g(-1). Benefiting from the rational design of the carbon anode, the optimized sodium ion capacitor exhibits a large energy density of 110.8 W h kg(-1) and retains 85% of its initial capacity after 10 000 cycles. This work provides an effective way to fabricate highly N-doped carbons for advanced energy storage devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available