4.7 Article

Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells

Journal

COMMUNICATIONS BIOLOGY
Volume 1, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s42003-018-0179-3

Keywords

-

Funding

  1. Royal Society (RS)
  2. EPSRC Speculative Engineering Program [EP/D505925/1]
  3. EPSRC Grand Challenge in Nanotechnology for Healthcare [EP/G062064/1]
  4. European Union
  5. Royal Free Charity
  6. NIHR UCLH NHS Trusts Biomedical Research Centre (BRC)
  7. Bio Nano Consulting (BNC)
  8. EPSRC [EP/K031953/1, EP/G062064/1] Funding Source: UKRI

Ask authors/readers for more resources

Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their micro-environments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available