4.7 Article

Trapping intermediates in metal transfer reactions of the CusCBAF export pump of Escherichia coli

Journal

COMMUNICATIONS BIOLOGY
Volume 1, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s42003-018-0181-9

Keywords

-

Funding

  1. NIH [R01 GM123725]
  2. Murdock Trust Natural Sciences grant [2015306: MNL: 2/25/2016]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]
  4. DOE Office of Biological and Environmental Research
  5. National Institutes of Health, National Institute of General Medical Sciences [P41 GM103393]

Ask authors/readers for more resources

Escherichia coli CusCBAF represents an important class of bacterial efflux pump exhibiting selectivity towards Cu(I) and Ag(I). The complex is comprised of three proteins: the CusA transmembrane pump, the CusB soluble adaptor protein, and the CusC outer-membrane pore, and additionally requires the periplasmic metallochaperone CusF. Here we used spectroscopic and kinetic tools to probe the mechanism of copper transfer between CusF and CusB using selenomethionine labeling of the metal-binding Met residues coupled to RFQ-XAS at the Se and Cu edges. The results indicate fast formation of a protein-protein complex followed by slower intra-complex metal transfer. An intermediate coordinated by ligands from each protein forms in 100 ms. Stopped-flow fluorescence of the capping CusF-W44 tryptophan that is quenched by metal transfer also supports this mechanism. The rate constants validate a process in which shared-ligand complex formation assists protein association, providing a driving force that raises the rate into the diffusion-limited regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available